
Lightbox Terminal
Quick Start Guide

Last updated 07/29/2022

Copyright © 2019, 2020, 2021, 2022
IntelliPay

All Rights Reserved
This manual contains information protected by copyright. No part of this manual
may be photocopied or reproduced in any form without prior written consent
from IntelliPay. Information contained in this manual is subject to change without
notice.

IntelliPay
12884 Frontrunner Blvd, Suite 220
Draper, Utah 84020

Lightbox Terminal
© IntelliPay 1

Table of Contents

Overview 3
Security 5

Implementation 6

Customization 9
Field Values 9
Form Appearance 10
Payment Methods 11
Store Only Mode 11
Updating Billing Information With Store Only Mode 12
Field Definitions 12

Response Handling 14
In-Session Response 14
Response Postback 16

Sample Code 18
PHP 19
PERL 19
CFML 20
RUBY 21
C# .NET 22
Java 23
VB.NET 24
Node.js (Express.js) 26
REACT 28
Angular 29

Caveats 32

Lightbox Terminal
© IntelliPay 2

Overview

IntelliPay’s Lightbox Terminal displays a payment form that floats over your

existing website content. The form makes it easy for your customer to submit a

payment without having to leave your billing portal. Lightbox Terminal pulls

customer ID numbers and payment amounts from the elements on your website.

It then calculates fees and processes transactions using other information you

identify on your page.

The image below shows the Lightbox Terminal payment form with prefilled

Customer Id and Amount fields:

Lightbox Terminal
© IntelliPay 3

Prefilling the form elements makes the payment process easier for your

customer. You can set values for the following form elements:

● Customer Id (“account”) – The application automatically displays the correct

customer ID based on the information that you flag on your web page. The

customer ID creates a way to track invoices and payments.

● Amount – The amount of the transaction is automatically filled in based on

information that you flag your web page. Prefilling the transaction amount

makes it easy for your customer to review an invoice and immediately submit

a payment for the correct amount

In addition the following fields will help you locate customers and transactions in

our interface:

● lastname and firstname – This will help you locate the transaction or

customer easier in our interface.

Lightbox Terminal
© IntelliPay 4

● invoice – This should be filled in with a unique identifier you create for the

transaction. This will help you locate the specific transaction easier in our

interface.

The service fee amount is calculated based on the amount value and updates if

your customer changes the amount.

This document includes information about how to incorporate Lightbox Terminal

into your online payment application:

● Implementation – The Implementation section describes how to set up your

website to display and customize Lightbox Terminal.

● Customization – The Customization section defines the field values and

labels that you can modify on the payment form.

● Response Handling – The Response Handling section defines the information

returned by IntelliPay and describes how to display it on your web page.

● Sample Code – The Sample Code section includes code snippets for most

common frameworks and languages. Update the authentication variables and

add the code to your application to get started using Lightbox Terminal.

Security
IntelliPay will provide you with an API key and a merchant key, which you must

use to communicate with Lightbox Terminal. Make sure that you store your API

credentials outside of your source code to prevent them from being exposed.

Depending on your development environment or language, you may store your

credentials in environment variables, secure containers or some other secure

storage.

Lightbox Terminal
© IntelliPay 5

Implementation
Lightbox Terminal displays in front of an existing website. Typically, you will

include Lightbox Terminal on an invoice or checkout page. The page will include

your customer’s ID or account number, the balance due, and it may include

information like billing address and phone number.

Lightbox Terminal can automatically pull customer and balance information from

your billing page and use it to populate the payment form. To implement Lightbox

Terminal on your website, first create a billing site that displays customer and

billing details. Next, identify the elements on your site that Lightbox Terminal will

use to display and process transaction information by setting the class attributes

to “ipayfield”. Add code to your website to request the Lightbox Terminal scripts,

and create a button that opens the payment form. Finally, handle the transaction

response messages from IntelliPay after your customer submits the transaction

request.

The steps below provide details about incorporating Lightbox Terminal into your

website:

1. On your billing page, identify the elements that will be sent to IntelliPay with

the transaction request. Any HTML element that includes class=”ipayfield” will

be available for the Lightbox Terminal script. For example, <input> elements

can be used to display billing details and also make them available to

Lightbox Terminal.

The following HTML tells Lightbox Terminal that the transaction amount

should be $1.00:

<input class="ipayfield" data-ipayname="amount" type=text
value="1.00" name='myamt' id='myamt'>

Lightbox Terminal
© IntelliPay 6

See the Customization section on page for a complete list of the values you

can provide to Lightbox Terminal.

2. Add code that submits a POST request to IntelliPay in the <HEAD> element of

the web page that will display the payment form. You must submit this POST

request every time your customer reaches the payment page.

The example below shows PHP that submits the POST request to the

autoterminal endpoint:

<HEAD>
<?php
$merchantkey = 'YOUR_MERCHANTKEY';
$apikey = 'YOUR_APIKEY';

$result =
file_get_contents('https://secure.cpteller.com/api/custapi.cfc
?method=autoterminal',false,
stream_context_create(array('http' => array('header' =>
"Content-type: application/x-www-form-urlencoded\r\n",'method'
=> 'POST','content' =>

http_build_query(array('merchantkey' => $merchantkey,
'apikey' => $apikey))))));

if ($result === FALSE) { /* Handle error */ }
echo $result;
?>
</HEAD>

Update the values for YOUR_MERCHANTKEY and YOUR_APIKEY in the

sample code with the values supplied by IntelliPay. The Sample Code section

on page includes code for different frameworks and languages.

IntelliPay returns a style sheet, scripts, and tokens that Lightbox Terminal

uses to parse the information on your website, display the payment form, and

submit and authenticate your transaction request.

Lightbox Terminal
© IntelliPay 7

3. Add the response from the POST request in step 2 to the <HEAD> element of

your payment page.

4. Add a button to your site that your customer will click to open the payment

form.You can launch the payment form using HTML attributes or Javascript,

as shown in the samples below:

To have your customer to enter payment card details, use the submit

methods, which open the payment form with blank fields for entering card

data. The example below shows launching the form from HTML:

<button data-ipayname=”submit” class=”ipayfield”
type=”button”>Open Lightbox</button>

Call the intellipay.onSubmit() method to open the payment form using

Javascript.

5. If required, your customer enters payment information on the form, and clicks

the pay button. IntelliPay returns the status of the transaction. See the

Response Handling section on page for details about transaction response

messages.

Lightbox Terminal
© IntelliPay 8

Customization
Lightbox Terminal includes functions for setting values on the payment form and

customizing some field labels and colors. Depending on the field, you can define

customizations using HTML or Javascript. The sections below describe setting

field values and customizing the appearance of the form.

Field Values
You can set values for the following fields so that they are already populated

when your customer opens the payment form:

● Customer ID (The “account” field)

● Amount

Other fields, which are defined in the Field Definitions section on page , are sent

to IntelliPay in the background to support transaction processing. Your customer

will not see them on the payment form, but you may display them on your billing

page.

To define values that will be sent to IntelliPay using HTML, set the class attribute

of any element to “ipayfield”. If you use an element of the type

HTMLInputElement element, Lightbox Terminal will use the value that you assign

to its “value” attribute. If you use any other HTML element, Lightbox Terminal will

parse the content of the tag to identify the correct value.

The example below shows how to define an amount value for the transaction

using an <input> tag:

<input class="ipayfield" data-ipayname="amount" type=text
value="1.00" name='myamt' id='myamt'>

Lightbox Terminal
© IntelliPay 9

The next example shows how to set the same value using a <p> tag:

<p class="ipayfield" data-ipayname="amount">1.00</p>

Choose which element to use depending on the design and requirements of your

billing site.

Form Appearance
You can define label text, item color, and background color for certain form

elements using Javascript.

To set the label text, call the intellipay.setItemLabel() method, and include the

field name and your customized label text as parameters. You can set label text

for the following fields or messages:

● account – The default label for the account field is “Customer Id”.

● button – The default text to display on the submit payment button is “Pay”.

● declinemessage - Set the text to display to the user on a decline.

● successmessage - Set the text to display to the user on an approval.

The sample code below shows how to change the default label on the account,

header, and button fields:

intellipay.setItemLabel("account","Account ID");//Set the label
for account
intellipay.setItemLabel("button","Make Payment");//Set the pay
button text

To customize item color, call the intellipay.setItemColor() method. Use the

intellipay.setItemBackgroundColor() to define a custom background color for a

field. Both methods take a field name and a color value as parameters. You can

only set item and background colors for the header field.

Lightbox Terminal
© IntelliPay 10

The sample code below shows how to set an item color and a background color

for the header:

intellipay.setItemColor("header","#FF0000");//red text in the
header
intellipay.setItemBackgroundColor("header","#0000FF");//blue
background in the header

Payment Methods
You may also wish the customer to preselect whether they are paying with ACH

or credit card. We provide the methods setACHAvailable and setCCAvailable

which take a boolean that is false if you want to disable that payment method, or

true to reenable. They default to enabled if the merchant supports that payment

method.

<input type="radio" value="CC" name='selectpay' onclick='
intellipay.setACHAvailable(false);intellipay.setCCAvailable(true)
;'>
<input type="radio" value="ACH" name='selectpay' onclick='
intellipay.setACHAvailable(true);intellipay.setCCAvailable(false)
;'>

Some fields or elements may be disabled or enabled using the intellipay.enable()

or intellipay.disable() functions. Currently only email and account may be

disabled. For example:

intellipay.disable("email");//Disable the email field

Store Only Mode
You may configure the Lightbox Terminal to only store the customers billing

information to do a future transaction via stored credentials. We provide the

Lightbox Terminal
© IntelliPay 11

method setStoreOnly which takes a boolean that is true if you want to turn on the

store-only mode, or false to return the terminal to payment acceptance mode. A

successful stored payment returns the numeric CUSTID parameter as ‘custid’ in

the response object passed to the registered runOnApproval() method..

<input type="radio" value="StoreOnly" name='selectpay' onclick='
intellipay.setStoreOnly(true);'>
<input type="radio" value="PaymentMode" name='selectpay'
onclick='intellipay.setStoreOnly(false);'>

Updating Billing Information With Store Only Mode
In order to retrieve new billing information from a client simply initiate a new

Lightbox Terminal with setStoreOnly set to true and update the returned CUSTID

in your billing system.

Field Definitions
The table below defines all of the fields that you can use to send data to

IntelliPay. Use the Field Name as the value for the data-ipayname attribute:

Field Name Format or Example Description

account Ex: ABCD1234 Your identifier for this customer.
This value will be displayed on the payment form.

amount N.NN Ex: 123.45 or 0.34.
There must be at least
one digit to the left of
the decimal point.

The transaction amount before the fee.
This value will be displayed on the payment form.

firstname Ex: John The customer’s first name.

lastname Ex: Doe The customer’s last name.

address1 Ex: 1234 Anywhere
Street

The first line of the customer’s street address.

Lightbox Terminal
© IntelliPay 12

address2 Ex: PO Box 1234 The second line of the customer’s street address,
if applicable.

city Ex: Jersey City The city portion of the customer’s address.

state Two-character state
abbreviation only or
empty. Ex: NJ

The state portion of the customer’s address.

zipcode NNNNN Ex: 07304 The zip code portion of the customer’s address.

country Three-character ISO
identification. Ex: USA

The three-character ISO formatted country code
for the country portion of the customer’s address.

phone NNN NNN NNNN The customer’s phone number.

email user@domain.com The customer’s email address.

fee N.NN Ex: 123.45 or 0.34.
There must be at least
one digit to the left of
the decimal point.

This field will be updated with the fee amount if
that information is available. The fee value
cannot be set by the merchant.

invoice Ex. A1B2C3D4 An invoice number associated with the
transaction.

comment Ex. “Purchase of Large
ACME weight by one
Wile E. Coyote”

A note about the transaction that will be stored
with the payment.

custid Ex. 111A1B1 The customer ID for a stored wallet transaction.
Do not send values for the cardnum and
cardholder fields if you are performing a stored
wallet transaction.

batchid Ex. 99999998 The batch ID associated with the approval.

routingnum 123456 The routing number on the check

bankacctnum 12345678 The bank account number on the check

bankacctype C C for checking, not required

Lightbox Terminal
© IntelliPay 13

Response Handling

In-Session Response
After you submit a transaction, IntelliPay will respond with a result message. The

response will contain the following information:

Attribute Name Format or Example Description

response Single character: A for
approved, D for declined

Defines the transaction approval status.

status Numeric: Ex. 12345678,
or -6

A positive Payment ID if the transaction is
approved, or a negative number representing
an error.

authcode Text: Ex. 384A84 An industry standard authorization code for
the transaction.

declinereason Text: Ex. “Success” “Success” for an approved transaction, or the
reason the transaction was not approved.

amount Amount: Ex. 1.23 The transaction amount submitted with the
approval request.

fee Amount: Ex. 1.23 The fee amount charged.

call Text: Ex. card_payment The API call used to authorize the
transaction.

nonce Text in GUID format A unique string associated with the
response.

hmac Base64 HMAC The HMAC for the response. Use your
authkey to validate the HMAC value.

receiptelements JSON A JSON object with elements useful for
rendering a receipt.

custid Numeric Returned on a successful Store Only call

paymenttype Character “C” returned for credit card transaction, “A”
returned for ACH transaction.

methodhint A hint to display to the
user as to identify the
card used. Two letter card

Ex. “VI ***1111",

Lightbox Terminal
© IntelliPay 14

abbreviation followed by “
***” then the last four of
the card.

cardbrand Card brand name Ex. "Visa", “MasterCard”, “American
Express”, “Discover”

To display the response, create elements on your web page with the class set to

“ipayresponsefield”. The elements that you use to display the response values

must be HTML form elements. Add a data-ipayname attribute to the element and

assign it a value of one of the Attribute Names in the table above. The example

below will display the decline reason in a field named “Decline Reason”:

<input class=”ipayresponsefield” data-ipayname=”declinereason”
name=”Decline Reason” type=”text”>

You can also define a response handler function by calling the

intellipay.runOnApproval() and intellipay.runOnNonApproval() functions. The

example below shows a function that will run when IntelliPay returns an approval:

intellipay.runOnApproval(function(response){
console.log("Demo Got Approval! --> " +
JSON.stringify(response));
});

If you wish to prevent Lightbox from showing the customer a receipt you can call
intellipay.disable("confirm") to prevent the display of the receipt by Lightbox. Your
application should then handle intellipay.runOnClose() after a
intellipay.runOnApproval() to display the payment status to the customer.

Lightbox Terminal
© IntelliPay 15

Response Postback
If you have configured a postback URL, you’ll receive a postback submission in

the same format as you will for our other online terminals directed toward the

postback URL configured for the merchant. The postback in the standard

application/x-www-form-urlencoded POST format as specified in RFC 7231. The

response will contain the following information:

Field Name Description

op
This is your online payment page key. It is used on some online payment
terminals, you can use the merchantid column in place of this.

timestamp The time the payment occurred (Mountain Time Zone.)

customerid
The id or token, which has been assigned to your customer as a result of the
payment.

paymentid The id or token, which has been assigned to the payment.

account The account information as it was entered on the page.

firstname Your customer’s first name as they entered it on the page.

lastname Your customer’s last name as they entered it on the page.

address1 First line of customer’s address as entered.

address2 Second line of customer’s address as entered.

city Customer’s city as entered.

state Customer’s state as entered.

Lightbox Terminal
© IntelliPay 16

zipcode Customer’s zipcode as entered.

phone Customer’s phone number as they entered it on the form.

department The department text the user selected if departments are enabled.

method "CARD", "ACH", allow for future values

invoice The invoice field is currently automatically assigned a value.

authcode The authorization code if a card payment.

avsdata The address verification system result for a card payment.

ipaddress The IP Address from which the user made the payment.

amount The amount of the payment.

fee The service or convenience fee if any.

total The amount of the payment plus the fee (if any.)

comment Any comment the user typed in the Comments field on the form.

invoice Invoice field

notes
This may contain details of the transaction. Format may vary with transaction
method and processor

arglist Empty on Lightbox postbacks

merchantid The merchant number (M#) of the account processing the transaction

origin The terminal of origin in text format

We may add additional fields from time to time and your application must be able

to handle unknown fields.

Lightbox Terminal
© IntelliPay 17

Sample Code
This section includes information about working with Lightbox Terminal in

different frameworks and sample code that you can add to your application to

quickly begin using Lightbox Terminal. This document includes sample code for

the following languages and frameworks:

● PHP

● PERL

● CFML

● RUBY

● C# .NET

● VB.NET

● Node.js (Express.js)

● REACT

The code included in these sections sets your merchantkey and apikey values

and sends a POST request to the Lightbox Terminal autoterminal endpoint.

See the Implementation section on page for additional details about how to use

the code and display the payment form. See the Customization section on page

for information about how to specify field names and values.

Lightbox Terminal
© IntelliPay 18

PHP
Copy and paste the code below into the <HEAD> element of the web page that

will display the payment form:

<?php
$merchantkey = 'YOUR_MERCHANTKEY';
$apikey = 'YOUR_APIKEY';

$result =
file_get_contents('https://secure.cpteller.com/api/custapi.cfc?me
thod=autoterminal',false,

stream_context_create(array('http' => array('header' =>
"Content-type: application/x-www-form-urlencoded\r\n",'method'
=> 'POST','content' =>

http_build_query(array('merchantkey' => $merchantkey,
'apikey' => $apikey))))));
if ($result === FALSE) { /* Handle error */ }
echo $result;
?>

Change the values for YOUR_MERCHANTKEY and YOUR_APIKEY to the values

provided by IntelliPay.

See the Implementation section on page for details about displaying the

payment form.

PERL
Copy and paste the code below into the <HEAD> element of the web page that

will display the payment form:

use HTTP::Request::Common qw(POST);
use LWP::UserAgent;

my $res = LWP::UserAgent->new()->request(POST
'https://secure.cpteller.com/api/custapi.cfc?method=autoterminal'
, {'merchantkey' => "YOUR_MERCHANTKEY", 'apikey' =>
"YOUR_APIKEY"});
print $res->content;

Lightbox Terminal
© IntelliPay 19

Change the values for YOUR_MERCHANTKEY and YOUR_APIKEY to the values

provided by IntelliPay.

See the Implementation section on page for details about displaying the

payment form.

CFML
Copy and paste the code below into the <HEAD> element of the web page that

will display the payment form:

<cfhttp
url="https://secure.cpteller.com/api/custapi.cfc?method=autotermi
nal" method="post" result="autoterminal" charset="utf-8">
<cfhttpparam type="formfield" name="merchantkey"
value="YOUR_MERCHANTKEY">
<cfhttpparam type="formfield" name="apikey" value="YOUR_APIKEY">
</cfhttp>
<cfoutput>#autoterminal.filecontent#</cfoutput>

Change the values for YOUR_MERCHANTKEY and YOUR_APIKEY to the values

provided by IntelliPay.

See the Implementation section on page for details about displaying the

payment form.

Lightbox Terminal
© IntelliPay 20

RUBY
Copy and paste the code below into the <HEAD> element of the web page that

will display the payment form:

require 'net/http'
require 'net/https'

uri =
URI.parse("https://secure.cpteller.com/api/custapi.cfc?method=aut
oterminal")
https = Net::HTTP.new(uri.host,uri.port)
https.use_ssl = true
req = Net::HTTP::Post.new(uri.path)
req['merchantkey'] = "YOUR_MERCHANTKEY"
req['apikey'] = "YOUR_APIKEY"
res = https.request(req)
puts res.body

Change the values for “YOUR_MERCHANTKEY” and “YOUR_APIKEY” to the values

provided by IntelliPay.

See the Implementation section on page for details about displaying the

payment form.

Lightbox Terminal
© IntelliPay 21

C# .NET
Copy and paste the code below into the <HEAD> element of the ASP web page

that will display the payment form:

<%@ Import Namespace="System.Net" %>
<%@ Import Namespace="System.IO" %>
<%
HttpWebRequest request = (HttpWebRequest)
WebRequest.Create("https://secure.cpteller.com/api/custapi.cfc?me
thod=autoterminal");
request.KeepAlive = false;
request.Method = "POST";

byte[] postBytes =
Encoding.ASCII.GetBytes("merchantkey=YOUR_MERCHANTKEY&apikey=YOUR
_APIKEY");
request.ContentType = "application/x-www-form-urlencoded";
request.ContentLength = postBytes.Length;
Stream requestStream = request.GetRequestStream();
requestStream.Write(postBytes, 0, postBytes.Length);
requestStream.Close();

HttpWebResponse response =
(HttpWebResponse)request.GetResponse();
Response.Write(new
StreamReader(response.GetResponseStream()).ReadToEnd());
%>

Change the values for YOUR_MERCHANTKEY and YOUR_APIKEY to the values

provided by IntelliPay.

See the Implementation section on page for details about displaying the

payment form.

Lightbox Terminal
© IntelliPay 22

Java
Use this code in your own class. The output of the call() function should go into

the <HEAD> of the document.

import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.UnsupportedEncodingException;
import java.net.URL;
import java.net.URLEncoder;
import java.nio.charset.StandardCharsets;
import java.util.HashMap;
import java.util.Map;
import java.util.stream.Collectors;
import javax.net.ssl.HttpsURLConnection;

class LightboxSample {
static String call() {

try {
URL url = new

URL("https://secure.cpteller.com/api/custapi.cfc?method=autoterminal");
HttpsURLConnection con = (HttpsURLConnection) url.openConnection();
con.setRequestMethod("POST");
con.setRequestProperty("Content-Type","application/x-www-form-urlencoded");
Map<String, String> params = new HashMap<>();
params.put("merchantkey","YOUR_MERCHANT_KEY");
params.put("apikey","YOUR_API_KEY");
con.setDoOutput(true);
con.setDoInput(true);
con.setConnectTimeout(15000);
con.setReadTimeout(15000);
String data = getParamsURLEncoded(params);
con.setRequestProperty("Content-length", String.valueOf(data.length()));
DataOutputStream out = new DataOutputStream(con.getOutputStream());
out.writeBytes(data);
out.flush();
out.close();
String response = new BufferedReader(new

InputStreamReader(con.getInputStream(),
StandardCharsets.UTF_8)).lines().collect(Collectors.joining("\n"));

return response;
} catch(IOException e){}
return null;

}

public static String getParamsURLEncoded(Map<String, String> params) {
StringBuilder sb = new StringBuilder();
int count = 0;
try {

for (Map.Entry<String, String> entry : params.entrySet()) {
if(count > 0)

sb.append("&");
sb.append(URLEncoder.encode(entry.getKey(), "UTF-8"));
sb.append("=");
sb.append(URLEncoder.encode(entry.getValue(), "UTF-8"));
count++;

Lightbox Terminal
© IntelliPay 23

https://secure.cpteller.com/api/custapi.cfc?method=autoterminal

}
} catch(UnsupportedEncodingException e) { //Can't happen
}
return sb.toString();

}
public static void main(String[] args){

System.out.println(call());
}

}

Change the values for YOUR_MERCHANTKEY and YOUR_APIKEY to the values

provided by IntelliPay.

See the Implementation section on page for details about displaying the

payment form.

VB.NET
Copy and paste the code below into the <HEAD> element of the ASP web page

that will display the payment form:

<%@ Import Namespace="System.Net" %>
<%@ Import Namespace="System.IO" %>
<%

Lightbox Terminal
© IntelliPay 24

Dim request as HttpWebRequest =
WebRequest.Create("https://secure.cpteller.com/api/custapi.cfc?me
thod=autoterminal")
request.KeepAlive = False
request.Method = "POST"

Dim postdata As String =
"merchantkey=YOUR_MERCHANTKEY&apikey=YOUR_APIKEY";
request.ContentType = "application/x-www-form-urlencoded";
request.ContentLength = postdata.Length;

Dim writer As New StreamWriter(request.GetRequestStream(),
System.Text.Encoding.UTF8)
writer.Write(postdata)
writer.Close();

HttpWebResponse response =
(HttpWebResponse)request.GetResponse();
Response.Write(new
StreamReader(response.GetResponseStream()).ReadToEnd());
%>

Change the values for YOUR_MERCHANTKEY and YOUR_APIKEY to the values

provided by IntelliPay.

See the Implementation section on page for details about displaying the

payment form.

Lightbox Terminal
© IntelliPay 25

Node.js (Express.js)
Follow the steps below to incorporate Lightbox Terminal into your Node.js

project:

1. Add an endpoint to your project that you will call to retrieve your

authentication credentials. You will use the credentials to set values for your

merchant key and API key.

6. Add the code below to your client-side project. This code retrieves your

credentials from the endpoint your created in step 1, uses them to set values

for YOUR_MERCHANT_KEY and YOUR_API_KEY, and sends a POST request to

the Lightbox Terminal autoterminal endpoint:

const express = require('express');
const axios = require('axios');
const qs = require('qs');
const app = express();

// You can name this endpoint whatever you would like
app.get('/api/lightbox_credentials', authMiddleware, (req,
res, next) => {

const options = {
method: 'POST',
headers: { 'content-type':

'application/x-www-form-urlencoded' },
data: qs.stringify({
merchantkey: '<YOUR_MERCHANT_KEY>',
apikey: '<YOUR_API_KEY>'

}),
url:

'https://secure.cpteller.com/api/custapi.cfc?method=autotermin
al',

};

axios(options).then((response) => {
res.send(response.data);

});
});

Lightbox Terminal
© IntelliPay 26

7. Add the code below to the endpoint you created in step 1. Send a GET request

to your endpoint. The code below returns the code you need to add to your

web page:

axios.get(''http://<YOUR_SERVER_URL>/api/lightbox_credentials'
).then(response => {

// This block of code will inject the lightbox code into
your page

var rg=document.createRange();

document.documentElement.appendChild(rg.createContextualFragme
nt(response.data));

intellipay.initialize();
});

8. Add a button to your web page that displays the Lightbox Terminal as shown

in the sample code below:

<button data-ipayname="submit" class="ipayfield">Open
Lightbox</button

See the Customization section on page for details about customizing the

appearance of the payment form. See the Implementation section on page for

details about displaying the payment form and submitting the transaction.

Lightbox Terminal
© IntelliPay 27

REACT
Copy and paste the code below into your REACT project to display the payment

form and process payments using the Lightbox Terminal:

import React, { Component } from 'react';
import axios from 'axios';

class PaymentPage extends Component {
componentDidMount() {

axios.get(''http://<YOUR_SERVER_URL>/api/lightbox_credentials').t
hen(response => {

var rg=document.createRange();

document.documentElement.appendChild(rg.createContextualFragment(
response.data));

intellipay.initialize();
});

}

render () {
return (

<div>
<button data-ipayname="submit"

class="ipayfield">Open Lightbox</button>
<input className="ipayfield"

data-ipayname="amount" type="hidden" value="1.00" />
</div>

);
}

}

export default PaymentPage;

See the Implementation section on page for details about displaying the

payment form.

Lightbox Terminal
© IntelliPay 28

Angular
Copy and paste the code below into your Angular project to display the payment

form and process payments using the Lightbox EMV Terminal:

import { Component, OnInit, HostListener } from '@angular/core';

import { HttpClient } from '@angular/common/http';

@Component({

selector: 'post-request-error-handling',

templateUrl: 'post-request-error-handling.component.html',

})

export class PostRequestErrorHandlingComponent implements OnInit {

errorMessage;

constructor(private http: HttpClient) {}

ngOnInit() {

var url = 'https://test.cpteller.com/api/custapi.cfc?method=autoterminal';

const formData = new FormData();

//Put in your credentials below.

formData.append('merchantkey', 'YOUR_MERCHANTKEY');

formData.append('apikey', 'YOUR_APIKEY');

this.http.post<any>(url, formData, { responseType: 'text' }).subscribe(

(response) => {

var rg = document.createRange();

document.documentElement.appendChild(

rg.createContextualFragment(response)

);

intellipay.initialize();

},

(err) => {

console.log(err.message);

},

Lightbox Terminal
© IntelliPay 29

() => {

console.log('completed');

}

);

}

openIntelliPayLightBox() {

document.getElementById('intelliPayButton').click();

}

isIntelliPayEvent(e) {

var domain = e.origin.substring(

e.origin.indexOf('.') + 1,

e.origin.lastIndexOf('.')

);

return domain === 'cpteller';

}

@HostListener('window:message', ['$event'])

postMessage(event) {

console.log('operation', event.data.operation);

if (this.isIntelliPayEvent(event) && typeof event.data.operation !==

'undefined') {

switch (event.data.operation) {

case 'isready':

//This will load the lightbox onload.

document.getElementById('intelliPayButton').click();

break;

case 'approval':

// event.data.response this will give you addational details.

console.log('payment was approved');

break;

case 'decline':

// event.data.response this will give you addational details.

console.log('payment was decline');

break;

Lightbox Terminal
© IntelliPay 30

case 'closemodal':

this.errorMessage =

'Payment Window closed. Reopen it by clicking here or by clicking

the button Pay Via IntelliPay below.';

break;

default:

console.log('default event not created.');

}

}

console.log('any message', event.data);

}

}

See the Implementation section on page for details about displaying the

payment form.

Lightbox Terminal
© IntelliPay 31

Caveats

1. Behind the scenes we use message passing to communicate between the
Lightbox Terminal and your web app.

If you use JavaScript code that listens to the window "message" event you
must still allow non-target events (those of a different event.origin) to
propagate.

To do this we recommend you check event.origin to exclude events from
unexpected sources. If the X does not close the frame it's likely the event
is being captured and not propagated.

See the postMessage API references for more details:
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

2. If you have a Content Security Policy on the webpage with the Lightbox
embedded, you’ll need to add https://*.cpteller.com/ to your script-src and
frame-src policies. If don’t have both a script-src and frame-src policy, but
you have a restrictive child-src then you’ll have to add
https://*.cpteller.com/ to your child-src policy. See
https://developers.google.com/web/fundamentals/security/csp for
information about Content Security Policies.

Lightbox Terminal
© IntelliPay 32

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developers.google.com/web/fundamentals/security/csp
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

